Noise reduction in genome-wide perturbation screens using linear mixed-effect models

نویسندگان

  • Danni Yu
  • John Danku
  • Ivan Baxter
  • Sungjin Kim
  • Olena K. Vatamaniuk
  • David E. Salt
  • Olga Vitek
چکیده

MOTIVATION High-throughput perturbation screens measure the phenotypes of thousands of biological samples under various conditions. The phenotypes measured in the screens are subject to substantial biological and technical variation. At the same time, in order to enable high throughput, it is often impossible to include a large number of replicates, and to randomize their order throughout the screens. Distinguishing true changes in the phenotype from stochastic variation in such experimental designs is extremely challenging, and requires adequate statistical methodology. RESULTS We propose a statistical modeling framework that is based on experimental designs with at least two controls profiled throughout the experiment, and a normalization and variance estimation procedure with linear mixed-effects models. We evaluate the framework using three comprehensive screens of Saccharomyces cerevisiae, which involve 4940 single-gene knock-out haploid mutants, 1127 single-gene knock-out diploid mutants and 5798 single-gene overexpression haploid strains. We show that the proposed approach (i) can be used in conjunction with practical experimental designs; (ii) allows extensions to alternative experimental workflows; (iii) enables a sensitive discovery of biologically meaningful changes; and (iv) strongly outperforms the existing noise reduction procedures. AVAILABILITY All experimental datasets are publicly available at www.ionomicshub.org. The R package HTSmix is available at http://www.stat.purdue.edu/~ovitek/HTSmix.html. CONTACT [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Relation between Hearing Loss and Smoking among Workers Exposed to Noise, Using Linear Mixed Models

Introduction: Noise is one of the most common and harmful physical factors in the working environment and has physical and psychological effects on individuals. In this study, the audiometry results of industrial workers were modeled and the effect of noise and other factors on hearing loss was examined.   Materials and Methods:                                                 ...

متن کامل

Non-Darcian Mixed Convection Flow in Vertical Composite Channels with Hybrid Boundary Conditions

In this article, the effects of viscous dissipation and inertial force on the velocity and temperature distributions of the mixed convection laminar flow in a vertical channel partly filled with a saturated porous medium have been studied. In this regard, the Brinkman–Forchheimer extended Darcy model was adopted for the fluid flow in the porous region. In addition, three different viscous dissi...

متن کامل

I-40: Male Genome Programming, Infertility and Cancer

Background: During male germ cells differentiation, genomewide re-organizations and highly specific programming of the male genome occur. These changes not only include the large-scale meiotic shuffling of genes, taking place in spermatocytes, but also a complete “re-packaging” of the male genome in post meiotic cells, leading to a highly compacted nucleo-protamine structure in the mature sperm...

متن کامل

Analysis of baseline, average, and longitudinally measured blood pressure data using linear mixed models

This article compares baseline, average, and longitudinal data analysis methods for identifying genetic variants in genome-wide association study using the Genetic Analysis Workshop 18 data. We apply methods that include (a) linear mixed models with baseline measures, (b) random intercept linear mixed models with mean measures outcome, and (c) random intercept linear mixed models with longitudi...

متن کامل

An Efficient Method for Model Reduction in Diffuse Optical Tomography

We present an efficient method for the reduction of model equations in the linearized diffuse optical tomography (DOT) problem. We first implement the maximum a posteriori (MAP) estimator and Tikhonov regularization, which are based on applying preconditioners to linear perturbation equations. For model reduction, the precondition is split into two parts: the principal components are consid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformatics

دوره 27 16  شماره 

صفحات  -

تاریخ انتشار 2011